Perl Programming for Systems Administrators

An introduction on how to program in Perl for Systems Administrators (5 days)

Synopsis

This is a specialist course in Perl
programming for system
administrators who want to use
the language to get their jobs

done more quickly and efficiently.

This Perl course includes a
thorough grounding in generic
Perl programming before moving
on to specialised system
administration tools and
techniques.

Who Should Attend

Programmers who need to
administer IT systems on any of
today's major platforms and in
multi-platform environments.

Delegates with backgrounds in C
like languages will recognise
elements of Perl syntax and can
use much existing knowledge,
but must beware the temptation
to translate literally from C/C++.
Perl's native way of doing things
is invariably more efficient and
better adapted to specialist
system administration tasks.

System administrators with
limited scripting (rather than pure
programming) experience may
need more than 4 days to benefit
fully from this course.

Like all our Perl courses, this
course is designed for cross-
platform system administration,
but Unix System Administrators
will benefit particularly by
recognising tools which have
been incorporated into Perl from
their favourite Operating System.

Course Contents

Preparing to Learn Perl
e Things you need to know and do
in order to run Perl and learn Perl
programming
e A module designed for complete
beginners
e The perl compiler/interpreter
e Perl under Unix/Linux
Perl under MS Windows
2000/NT/95/98/ME (perl.exe)
ActiveState Perl
Making programs executable
Perl from the command line
Specify the perl
compiler/interpreter (#!)
Using plain text
Writing a very simple program
Running a very simple program
Basic syntax

Perl: The Absolute Minimum

e Enough of the language to get
started

e The print command

e Variables

e Scalars — numbers and 'strings'
e Assignment

e Simple conditional tests — if

"strings" "\n"

Lists

Arrays — for storing lists

foreach

Hashes

Other loops: while, for, do, until
Arrays — the rest

Simple input, e.g. while(<>)
Functions overview —
recognising, writing, using
Regular expressions — perlre
e Simple file handling — open, print
e Subroutines — parameters in and

out, listification, local variables

e Help — perldoc, books, web

Perl: Beyond the Basics

More flow control

Statement modifiers

Quoting mechanisms — qq (), etc
Here documents
Uppercase/lowercase conversion
Splitting strings into lists

Joining lists into strings

Filtering lists with map

Sorting lists

The importance of context
Assignment shortcuts

Scoping rules

Special variables

Complex Data Structures &
References

Limits of flat lists

Nesting arrays

Array references

Anonymous arrays

Named array references
Passing multiple arrays to/from
functions

Hashes of arrays

Hash references

Arrays of hashes

Hashes of hashes

Complex nested data structures
Code references

Dispatch tables

Finding Out More For Yourself

e How to read Perl's documentation

e Where to find more information

e Knowing what's out there to look
for

e FAQs

The Perl Debugger &
Debugging Perl
Avoiding bugs
Perl’s built-in debugger
Invoking the debugger
What you can do with the
debugger
e Understanding the debugger's
command line interface
e Knowing the debugger's basic
command set
e Exploring some extended
functions
e Graphical debuggers
e Alternative debugging techniques

Using Perl Modules from CPAN
e The Comprehensive Perl Archive
Network (CPAN)

e Why effective Perl programmers
are efficient CPAN users

CPAN's philosophy

Finding modules

Installing Modules

Using modules

Some particularly useful modules

Command-Line Perl

General principles

Using Perl as a filter
Awk-like Perl

Many real world examples
Many examples using regular
expressions

Command line flags

A Whistle-Stop Tour of the
World of Perl

Wheels you don't need to re-invent
Common recipes
Common pitfalls

Advanced File Processing with
Perl

Types of open

Filehandles

Reading line by line

Reading paragraph by paragraph
Reading entire files

Special variables

The flip-flop operator (. .)

File test functions

Pipes

Perl Security Issues

Potential security pitfalls

Coding for security

Taint checking

Dangerous environment variables
File input

Set-user-id Perl programs
Permissions and users

System interaction

Connecting to other programs
Unsafe pipes

Using 10: :Pipe

Grabbing a program's output
Other ways to run programs

Managing Users and
Processes with Perl

User identity across platforms
Process control

Scheduling events

Managing disk quotas
Querying filesystem usage
Monitoring file operations
Monitoring network operations
Related perl modules

Managing Networks with Perl

Host Files

NIS and NIS+

DNS

WHOIS

LDAP

ADSI

Sending and receiving email
Related modules

Loggmg with Perl

Text logs

Binary logs

Handling state

Disk usage problems
Log analysis

Log munging

Logging related modules

Delivery

This is a hands-on practical
workshop based around the
coding of real-world solutions to
real-world problems.

Erio



